Internet voting in Estonia: risk modelling and vote verification

Sven Heiberg, Jan Willemson Cybernetica, STACC

22.05.2012

Software Technology and Applications Competence Center

Risk modelling

Internet voting (i-voting)

- I-voting is a form of electronic voting
 - Vote is cast with a voting tool
 - Vote is transported to election officials over the internet
 - It is possible to vote without any paper
- The term "electronic voting" also covers other methods we will not consider
 - Electronic verification of paper ballots
 - Code voting

A bit of history

- First reports concerning Internet voting in Estonia were written in 2001
- The basic principles of i-voting were agreed upon in 2003
- These principles stood until 2011
 - Mimicking postal double-envelope voting
 - Accepting potential insecurity of voters' computers

I-voting in Estonia

YBERNETICA

Parliamentary election 2011

- Election rigging malware developed by a student
 - Wanted public attention, attempted revocation
- Voting application defect used in political battle
- Anti-i-voting propaganda
 - Local municipalities' workshop, the Red Book
 - Stop internet voting

7

Threat modelling

- Critical information system must be accompanied by a threat model
 - The current threat model was developed in 2003, but the world has changed
- So we tried to create a threat model that would be easy to maintain and update for emerging threats
- We chose attack trees based approach

Root-node problem

- Proposed root-nodes in literature
 - Change result of election successfully [Lazarus *et al.* 2011]
 - Attack voting equipment OR Attack voting process OR Insider threats [Pardue *et al.* 2010]
 - Large-scale votes' theft OR Large-scale disfranchisement of votes OR Largescale votes' buying and selling OR Large-scale privacy violation [Buldas and Mägi 2007]

What is the purpose of elections?

- Delegating the power (formally vested into people) to a small set of representatives
- Hence, the real target of attacks (a.k.a. root node of attack tree) should be

Increase influence in the society

Meta-structure of the tree

Attack strategies

Three main attack classes

Violating the requirements

Specific techniques

Generic techniques

The requirements for elections

- Only eligible voters can vote
- Voting expresses free will
- All citizens have right to vote
- All votes are equal
- The vote is cast directly by the voter
- The votes are secret
- Tallied and published correctly
- All cast ballots are taken into account
- Voters have access to elections

Manipulation attacks

- Manipulation attacks attempt to change the election outcome by directly/indirectly manipulating with a voting result
 - Most analysed attack category
 - 1 additional seat in Estonia costs approximately 5000 additional votes
 - In order to be successful the attack must remain hidden and the beneficiary secret
 - Technically complex, expensive, illegal

13

Revocation attacks

- Revocation attacks attempt to change the election outcome by revoking unsuitable voting result
 - Parties score differently in voting methods
 - Requires a proven violation of the rights with possible impact to the result
 - In order to be successful the attack must become visible, but the beneficiary has to remain secret

Beneficiary can stage the attack (illegal) 14

Reputation attacks

- Reputation attacks attempt to change the attitude towards unsuitable voting method
 - Reputation attacks are all about talking no real attack has to take place
 - Nothing has to be hidden, the attack can not be easily distinguished from democratic process easily, it is perfectly legal

Generic techniques

- Involve institutions
- Involve the public
- Attack persons
- Use malware
- Attack the transport channel
- Attack the central system

Attacker's advantage

- Consider an attacker who wants to manipulate the election outcome
 - He starts with a manipulation attack
 - He fails attack is discovered, but he manages to keep the beneficiary secret
 - He now changes strategy and tries to revoke the voting result altogether
 - He fails Supreme Court decides that the attack had no real effect
 - He continues with propaganda
 - The success depends on the quality of his PR team

Vote verification

Aftermath of 2011 parliamentary elections

- Assumptions made in 2003 no longer hold
 - Creating specifically crafted malware has become accessible to moderately motivated students
 - I-voting has become so significant that it makes sense to attack it

Aims of verifiability

- Fight against real manipulation attacks
- Discourage potential real attackers
- Prevent revocation and reputation attacks
 - This item is actually the most important one, since reputation attacks are cheap, risk-free and can be expected to have huge impact

Levels of verifiability

- By Popoveniuc, Kelsey, et al.
 - Presented ballots are well-formed
 - Cast ballots are well-formed
 - Recorded as cast
 - Tallied as recorded
 - The two last sets are consistent
 - Only "Recorded as cast" votes are tallied
- In Estonia we target the "Recorded as cast" level

Verifiability: The Problem

- It is very easy to attack the voter's computer environment
 - That's why we need verification
- If we would rely on the same computer for verification, we would not achieve much against malware
- Hence, we need alternative environments and/or channels
 - They tend to be non-universal and/or expensive

Towards optimal solution

- We have to find an equilibrium between different contradictory requirements
 - Security
 - Already these requirements are contradictory
 - Usability
 - Availability
 - Possibility to implement

Methods of verification

- Electronic verification of paper voting
 - Scratch and Vote, Wombat, Prêt à Voter
 - Our target is pure Internet voting
- Electronic voting, verification using alternative channels/environments
 - Code voting
 - Verification codes
 - Vote auditing
- In Estonia, verification codes or vote auditing work the best

Alternative channels

- Postal service can be used to send sheets with verification codes
 - In Estonia, real addresses are not known
 - Generating and sending sheets is expensive
- E-mail
 - E-mail addresses are not known
 - E-mails will be read on the same computer
- SMS
 - Phone numbers are not known
 - SMS is not authenticated

Alternative environments

- Second PC for handling codes or auditing
 - We may require voters to use a different PC for verification, but how many would do so?
- Another computing platform
 - A mobile device!
 - PC applications do not run on them, and for us this is a good thing

Codes or auditing?

- When considering the solution with verification codes, just an alternative platform does not solve the problems of unknown addresses and authentication of code sheets
- Hence, the decision was taken to apply the vote auditing scenario with a mobile device

Verification: some details

- Rnd moves from PC to mobile device via QR code
- Verification essentially cracks the encrypted vote by brute force
 - In practice, we have up to 400 candidates in one district, cracking takes a few seconds on a moderate smartphone

The scheme: pros and cons

- Pro: Incrementality w.r.t. present system
- Pro: Minimal extra overhead to usability
- Con: Not everyone has access to a mobile device
 - Not everyone has a computer, either
 - The mobile device can be shared
 - Technology is developing very rapidly, smart phones are outselling regular ones since 2011, the next elections are in 2013
 - You can get an Android phone for 0 EUR
 - It is enough to verify 2% of votes to catch

CYBERNETICA large-scale manipulation attacks

Thank you!

Discussions

